
Introduction to Python
Star Ying

dataacademy@doc.gov

Based on Google’s Python Class

https://developers.google.com/edu/python/

https://developers.google.com/edu/python/
https://developers.google.com/edu/python/

Background

Python is a popular, object-oriented, and structured programming language. It’s
design is guided by the ‘Zen of Python’ software principles.

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one— and preferably only one —obvious way

to do it although that way may not be obvious at first unless

you're Dutch.

Now is better than never.

Although never is often better than right now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea—let's do more of

those!

3

Extending Python

Python is highly extensible. Besides the core functionality of Python, packages for
Python can be imported to obtain additional functionality through conda or pip.

You should have installed the following packages prior to class:

● ujson
● numpy
● scipy

4

Editing Python

A Python program is just a text file that you edit directly. The program typically is
saved with a .py extension to differentiate. Using an editor designed for
programming is preferred. Do not use Wordpad or Notepad.

You should have one of the following installed prior to class:

● Sublime
● Atom
● Notepad++

5

Python Interpreter

The Python interpreter can be called by itself. This can allow you to experiment
with commands and syntax as you write your program.

To call the Python interpreter itself:

python

To pass a Python program to the interpreter:

python program.py

6

Hello World

print ‘Hello World’

7

Hello World

print ‘Hello World’

But not goodbye

8

Indentation Matters

Whitespace indentation of a piece of code affects its meaning. A logical block of
statements should all have the same indentation. If one of the lines in a group has
a different indentation, it is flagged as a syntax error.

Avoid using TABs as they greatly complicate the indentation scheme. Set your
editor to insert spaces instead of TABs for Python code.

9

Exercise

Create a Python program, that when
passed to the Python interpreter prints

‘Hello World’?

10

Indentation Matters

def hello():

print ‘Hello World’

print ‘Hello Again’

hello()
11

Strings

Python has a built-in string class named "str". Strings can be enclosed by either
double or single quotes. A double quoted string literal can contain single quotes
without any fuss and likewise single quoted string can contain double quotes.

‘Hello World’

“Hello World’

‘“Hello World”’

12

Strings

Python strings are "immutable" which means they cannot be changed after they
are created. Since strings can't be changed, we construct *new* strings as we go
to represent computed values.

print ‘Hello’ + ’World’

13

Strings

Characters in a string can be accessed using the standard [] syntax. If the index is
out of bounds for the string, Python raises an error. The len(string) function returns
the length of a string.

print ‘Hello World’[1]

print len(‘Hello World’)

14

Strings

s = 'hi'
print s[1] ## i
print len(s) ## 2
print s + ' there' ## hi there

15

Concatenation

Concatenate strings with +. You cannot concatenate different types. The str()
function converts values to a string form so they can be combined with other
strings.

pi = 3.14
text = 'The value of pi is ' + pi ## NO, does not work
text = 'The value of pi is ' + str(pi) ## yes

16

String Methods

A method is like a function, but it runs "on" an object. If the variable s is a string,
then the code s.lower() runs the lower() method on that string object and returns
the result (this idea of a method running on an object is one of the basic ideas that
make up Object Oriented Programming, OOP).

17

String Methods

s.lower(), s.upper()

returns the lowercase or uppercase
version of the string

18

String Methods

s.strip()

returns a string with whitespace removed
from the start and end

19

String Methods

s.isalpha()

s.isdigit()

s.isspace()...

tests if all the string chars are in the
various character classes

20

String Methods

s.startswith('other')

s.endswith('other')

tests if the string starts or ends with the
given other string

21

String Methods

s.find('other')

searches for the given other string (not a
regular expression) within s, and returns
the first index where it begins or -1 if not
found

22

String Methods

s.replace('old', 'new')

returns a string where all occurrences of
'old' have been replaced by 'new'

23

String Methods

s.split('delim')

returns a list of substrings separated by
the given delimiter. The delimiter is not a
regular expression, it's just text.

24

String Methods

'aaa,bbb,ccc'.split(',') -> ['aaa', 'bbb', 'ccc'].

As a convenient special case s.split() (with no arguments) splits on all
whitespace chars.

25

String Methods

s.join(list)

opposite of split(), joins the elements in the given
list together using the string as the delimiter.

'---'.join(['aaa', 'bbb', 'ccc']) ->
aaa---bbb---ccc

26

String Slices

 H e l l o

 0 1 2 3 4

-5 -4 -3 -2 -1

27

Exercise

Slice the string ‘Star is Here’ to get

‘Here is Star’

28

String %

The % operator takes a printf-type format string on the left (%d int, %s string, %f or
%g floating point), and the matching values in a tuple on the right (a tuple is made
of values separated by commas, typically grouped inside parentheses)

text = "%d is %s" % (3, ‘three’)

text = ("%d little pigs come out or I'll %s and %s and %s" %
(3, 'huff', 'puff', 'blow down'))

29

Unicode Strings

Regular Python strings are *not* unicode, they are just plain bytes. To create a
unicode string, use the 'u' prefix on the string literal:

ustring = u'A unicode \u018e string \xf1'

30

Unicode Strings

A unicode string is a different type of object from regular "str" string, but the
unicode string is compatible and the various libraries such as regular expressions
work correctly if passed a unicode string instead of a regular string.

To convert a unicode string to bytes with an encoding such as 'utf-8', call the
ustring.encode('utf-8') method on the unicode string. Going the other direction, the
unicode(s, encoding) function converts encoded plain bytes to a unicode string:

s = u'A unicode \u018e string \xf1'.encode('utf-8')

t = unicode(s, 'utf-8')

31

If Statements

Python does not use { } to enclose blocks of code for if/loops/function etc.. Instead, Python uses the
colon (:) and indentation/whitespace to group statements. The boolean test for an if does not need to be
in parenthesis, and it can have elif and else clauses.

Any value can be used as an if-test. The "zero" values all count as false: None, 0, empty string, empty list,
empty dictionary. There is also a Boolean type with two values: True and False (converted to an int,
these are 1 and 0). Python has the usual comparison operations: ==, !=, <, <=, >, >=. The boolean
operators are the spelled out words and, or, not.

32

If Statements

if speed >= 80:
 print 'License and registration please'
 if mood == 'terrible' or speed >= 100:
 print 'You have the right to remain silent.'

elif mood == 'bad' or speed >= 90:
print "I'm going to have to write you a ticket."

 write_ticket()
 else:
 print "Let's try to keep it under 80 ok?"

33

If Statements

if speed >= 80: print 'You are so busted'
else: print 'Have a nice day'

34

Mathematical Operators

For numbers, the standard operators, +, -, /, *, **, % work in the usual way.

There is no ++ operator, but +=, -=, etc. work.

If you want integer division, it is most correct to use 2 slashes -- e.g. 6 // 5 is 1.

35

Lists

Python has a built-in list type named "list".

List literals are written within square brackets [].

Lists work similarly to strings -- use the len() function and
square brackets [] to access data, with the first element at
index 0.

36

Lists

colors = ['red', 'blue', 'green']
print colors[0] ## red
print colors[2] ## green
print len(colors) ## 3

37

Lists

Assignment with an = on lists does not make a copy. Instead,
assignment makes the two variables point to the one list in
memory.

b = colors ## Does not copy the list

38

Lists

The "empty list" is just an empty pair of brackets [].

The '+' works to append two lists, so [1, 2] + [3, 4]
yields [1, 2, 3, 4] (this is just like + with strings).

39

For Loop

Python's for and in constructs are extremely useful, and the
first use of them we'll see is with lists.

The for construct -- for var in list -- is an easy way to
look at each element in a list (or other collection). Do not add
or remove from the list during iteration.

40

For Loop

squares = [1, 4, 9, 16]
sum = 0
for num in squares:

sum += num
print sum ## 30

41

For Loop

The in construct on its own is an easy way to test if an
element appears in a list (or other collection), returning
True/False.

list = ['larry', 'curly', 'moe']
if 'curly' in list:

print 'yay

42

For Loop

You can also use for/in to work on a string. The string acts
like a list of its chars, so for ch in s: print ch prints
all the chars in a string.

43

Range

The range(n) function yields the numbers 0, 1, ... n-1, and
range(a, b) returns a, a+1, ... b-1 -- up to but not including
the last number. The combination of the for-loop and the
range() function allow you to build a traditional numeric for
loop:

print the numbers from 0 through 99
for i in range(100):

print i
44

While Loop

Python also has the standard while-loop, and the break and continue. The
above for/in loops solves the common case of iterating over every element in a
list, but the while loop gives you total control over the index numbers. Here's a
while loop which accesses every 3rd element in a list:

Access every 3rd element in a list
i = 0
while i < len(a):

print a[i]
i = i + 3

45

List Methods

list.append(elem)

adds a single element to the end of the
list. Common error: does not return the
new list, just modifies the original.

46

List Methods

list.insert(index, elem)

inserts the element at the given index,
shifting elements to the right.

47

List Methods

list.extend(list2)

adds the elements in list2 to the end of
the list. Using + or += on a list is similar
to using extend().

48

List Methods

list.index(elem)

searches for the given element from the start of
the list and returns its index. Throws a ValueError
if the element does not appear (use "in" to check
without a ValueError).

49

List Methods

list.remove(elem)

searches for the first instance of the
given element and removes it (throws
ValueError if not present)

50

List Methods

list.sort()

sorts the list in place (does not return it).
(The sorted() function shown below is
preferred.)

51

List Methods

list.reverse()

reverses the list in place (does not return
it)

52

List Methods

list.pop(index)

removes and returns the element at the
given index. Returns the rightmost
element if index is omitted (roughly the
opposite of append()).

53

List Building

One common pattern is to start a list a the empty list [], then use append() or
extend() to add elements to it:

list = [] ## Start as the empty list
list.append('a') ## Use append() to add elements
list.append('b')

54

List Slices

Slices work on lists just as with strings, and can also be used to change sub-parts
of the list.

list = ['a', 'b', 'c', 'd']
print list[1:-1] ## ['b', 'c']
list[0:2] = 'z' ## replace ['a', 'b'] with ['z']
print list ## ['z', 'c', 'd']

55

Sorting

The easiest way to sort is with the sorted(list) function, which takes a list and
returns a new list with those elements in sorted order. The original list is not
changed.

a = [5, 1, 4, 3]
print sorted(a) ## [1, 3, 4, 5]
print a ## [5, 1, 4, 3]

56

Sorting

The sorted() function can be customized though optional arguments. The
sorted() optional argument reverse=True, e.g. sorted(list,
reverse=True), makes it sort backwards.

strs = ['aa', 'BB', 'zz', 'CC']
print sorted(strs) ## ['BB', 'CC', 'aa', 'zz'] (case sensitive)
print sorted(strs, reverse=True) ## ['zz', 'aa', 'CC', 'BB']

57

Sorting

For more complex custom sorting, sorted() takes an optional "key=" specifying a
"key" function that transforms each element before comparison. The key function
takes in 1 value and returns 1 value, and the returned "proxy" value is used for the
comparisons within the sort.

For example with a list of strings, specifying key=len (the built in len() function)
sorts the strings by length, from shortest to longest.

strs = ['ccc', 'aaaa', 'd', 'bb']
print sorted(strs, key=len) ## ['d', 'bb', 'ccc', 'aaaa']

58

Sorting

As another example, specifying "str.lower" as the key function is a way to force the
sorting to treat uppercase and lowercase the same:

"key" argument specifying str.lower function to use for sorting
print sorted(strs, key=str.lower) ## ['aa', 'BB', 'CC', 'zz']

59

Sorting

strs = ['xc', 'zb', 'yd' ,'wa']

def MyFn(s):
return s[-1]

print sorted(strs, key=MyFn) ## ['wa', 'zb', 'xc', 'yd']

print sorted(strs, key=lambda x: x[-1]) ## ['wa', 'zb', 'xc', 'yd']

60

Tuple

A tuple is a fixed size grouping of elements, such as an (x, y) co-ordinate.

Tuples are like lists, except they are immutable and do not change size (tuples are
not strictly immutable since one of the contained elements could be mutable).

Tuples play a sort of "struct" role in Python. A function that needs to return multiple
values can just return a tuple of the values.

61

Tuple

tuple = (1, 2, 'hi')
print len(tuple) ## 3
print tuple[2] ## hi
tuple[2] = 'bye' ## NO, tuples cannot be
changed
tuple = (1, 2, 'bye') ## this works

62

Tuple

To create a size-1 tuple, the lone element must be followed by a comma.

tuple = ('hi',) ## size-1 tuple

63

Tuple

Assigning a tuple to an identically sized tuple of variable names assigns all the
corresponding values. If the tuples are not the same size, it throws an error. This
feature works for lists too.

(x, y, z) = (42, 13, "hike")
print z ## hike

64

List Comprehension

A list comprehension is a compact way to write an expression that expands to a
whole list. The syntax is [expr for var in list] -- the for var in list looks
like a regular for-loop, but without the colon (:).

nums = [1, 2, 3, 4]
squares = [n * n for n in nums] ## [1, 4, 9, 16]

65

List Comprehension

You can add an if test to the right of the for-loop to narrow the result. The if test is
evaluated for each element, including only the elements where the test is true.

Select values <= 2
nums = [2, 8, 1, 6]
small = [n for n in nums if n <= 2] ## [2, 1]

Select fruits containing 'a', change to uppercase
fruits = ['apple', 'cherry', 'banana', 'lemon']
afruits = [s.upper() for s in fruits if 'a' in s]
['APPLE', 'BANANA']

66

Exercise

Given a = range(100) square every
odd number using list comprehension

67

Dictionary

Python's efficient key/value hash table structure is called a "dict".

The contents of a dict can be written as a series of key:value pairs within braces
{}, e.g. dict = {key1:value1, key2:value2, ... }. The "empty dict" is
just an empty pair of curly braces {}.

Looking up or setting a value in a dict uses square brackets, e.g. dict['foo']
looks up the value under the key 'foo'. Strings, numbers, and tuples work as
keys, and any type can be a value.

68

Dictionary

dict = {}
dict['a'] = 'alpha'
dict['g'] = 'gamma'
dict['o'] = 'omega'

69

Dictionary

print dict ## {'a': 'alpha', 'o': 'omega', 'g': 'gamma'}

70

Dictionary

print dict['a'] ## Simple lookup, returns 'alpha'
dict['a'] = 6 ## Put new key/value into dict
'a' in dict ## True

print dict['z'] ## Throws KeyError

if 'z' in dict: print dict['z'] ## Avoid KeyError
print dict.get('z') ## None (instead of KeyError)

71

Dictionary

A for loop on a dictionary iterates over its keys by default.

The keys will appear in an arbitrary order.

for key in dict: print key

72

Dictionary

The methods dict.keys() and dict.values() return
lists of the keys or values explicitly.

for key in dict.keys(): print key

print dict.values()

73

Dictionary

There's also an dict.items() which returns a list of (key,
value) tuples, which is the most efficient way to examine all
the key value data in the dictionary. All of these lists can be
passed to the sorted() function.

print dict.items()

for key in sorted(dict.keys()):
print key, dict[key]

74

Dictionary Formatting

The % operator works conveniently to substitute values from a dict into a string by
name:

hash = {}
hash['word'] = 'garfield'
hash['count'] = 42
s = 'I want %(count)d copies of %(word)s' % hash

75

Del

The "del" operator does deletions. In the simplest case, it can
remove the definition of a variable, as if that variable had not
been defined. Del can also be used on list elements or slices
to delete that part of the list and to delete entries from a
dictionary.

var = 6
del var # var no more!

76

Input/Output

The open() function opens and returns a file handle that can
be used to read or write a file in the usual way.

The code f = open('name', 'r') opens the file into the
variable f, ready for reading operations, and use f.close()
when finished.

77

Input/Output

Instead of 'r', use 'w' for writing, and 'a' for
append.

78

Input/Output

The special mode 'rU' is the "Universal" option
for text files where it's smart about converting
different line-endings so they always come
through as a simple '\n'.

79

Input/Output

f = open('foo.txt', 'rU')
for line in f:
print line,

f.close()

80

Input/Output

with open('foo.txt', 'rU') as f:
for line in f:
print line,

81

Import

We can import additional packages to extend
Python:

import ujson as json

import json

82

JSON/uJSON

JSON is an open-standard format that uses
human-readable text to transmit data objects
consisting of attribute–value pairs.

83

JSON/uJSON

json is a default package that is included with Python. It
allows for the decoding and encoding of JSON format.

UltraJSON or ujson is an additional package that allows for
faster decoding and encoding of JSON format.

84

JSON/uJSON
{
 "firstName": "John",
 "lastName": "Smith",
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100"
 },
 "phoneNumbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "mobile",
 "number": "123 456-7890"
 }
],
 "children": [],
 "spouse": null
}

85

JSON/uJSON

import json

with open(‘file.json’, ‘rU’) as f:

loadedfile = json.load(f)

86

JSON/uJSON

import json

assembledfile = {‘a’:’1’,’b’:’2’}

with open(‘file.json’, ‘wU’) as f:

json.dump(assembledfile,f)

87

NumPy

NumPy is the fundamental package for scientific computing with Python. It
contains among other things:

● a powerful N-dimensional array object
● sophisticated (broadcasting) functions
● tools for integrating C/C++ and Fortran code
● useful linear algebra, Fourier transform, and random number

capabilities

88

NumPy

import numpy as np

a = range(10)

print ‘DescriptiveStatistics! %f, %f’%(np.mean(a),np.std(a))

89

